CCA Basic Training - Forage Crops

Presenter: Sid Bosworth
University of Vermont Extension

Credit: Jerry Cherney Cornell University

Handout Orientation!

CCA Basic Training - Forage Crops

National Exam:
Sections related to forages,
but appear to be very Brief.

Northeast Regional Exam:
More forages than national.
Specific examples for NYS.

8 CCA Competency Areas

- 1. Crop Adaptation
- 2. Tillage Systems
- 3. Seeding Factors
- 4. Seeding Rates & Row Spacing
- 5. Replanting Decisions
- 6. Staging, Growth & Development
- 7. Forage Harvesting Factors
- 8. Cropping Systems

(37 Performance Objectives)

Primarily Dairy forage in Northeast

Variable soils
High quality forage

Soil pH influences:

Recommended pH Ranges

Soil Drainage influences:

- A. Species selection. B. Persistence of pereinials.
- C. Mater requirements...

Poorly drained

WL355RR

HarvXtra

2016 seeding Interaction of cultivar and drought

Seeding Factors – Ideal Seedbed Conditions

Smooth
Firm
Free of clods
Some residue

Footprint in seedbed no more than 1" deep.

Seedbed Preparation

Fine, Firm and Smooth

Excess amount of large clods

Too fluffy

http://www.forages.psu.edu/selection_tool/index.html

Species selection is based on primarily on soil drainage, but also is use-specific.

Species Selection Program

Select soil type.

Select hay/silage or pasture use.

Select Animal type:

Dairy, Sheep, Beef, Horse

Site-specific, Use-specific forage species recommendation is provided.

Soil Type: Palms Recommended for Lactating Dairy Pasture:

Species Tons/acre Pounds DM/acre/month

May Jun Jul Aug Sep Oct

Reed canarygrass 2.1 915 1098 549 366 549 183

(Reference corn yield is Grain, 60 bu/a, Silage, 10.2 tons)

12 Soil Type: Palms (Optimum artificial drainage)

Recommended for Lactating Dairy Pasture:

Down do DM/oaro/month

<u>Species</u>	Ions/acre Pounds Divi/acre/month						
		May	<u>Jun</u>	Jul .	Aug	<u>Sep</u>	<u>Oct</u>
Reed canarygrass	4.4	1936	2323	1162	774	1162	387
Orchardgrass	4.4	2323	2323	774	774	1162	387
Orchard/Ladino	2.8	1342	1541	845	497	497	249
Timothy/Ladino	2.6	1140	1369	684	456	684	228
Timothy/Brome/La	dino2.9	1260	1512	756	504	756	252
Timothy/Reedcanar	ry/						
Ladino/Alsike	3.0	1490	1703	798	532	532	266
(Reference corn yield is Grain, 150 bu/a; Silage, 25.5 tons)							

Factors that influence species selection: Grass Species

Timothy

All cool season grass species respond well to N fertilizer

- Shallow root system
- Low K content.
- Not drought tolerant.
- Persistent, easy to establish.
- Noncompetitve grass.
- Lower in protein than other grasses...

Smooth bromegrass

- Winter hardy.
- Early spring grazing.
- Tolerates hot, dry conditions.
- Damaged by harvest during stem elongation..

Reed Canarygrass

Orchardgrass

- Withstands close grazing, but....
- Very competitive with legumes.
- Matures earlier than other grasses.
- High K content if soil K is available..

Sparse-flowering orchardgrass germplasm (started in 1998 in Wis.)

Tall Fescue

- Withstand heavy traffic.
- Need low-endophtye variety.
- Establishes easy.
- Regrowth good..

Novel Endophyte was developed to fight stress: drought in the mid-South USA, and insect predation in NZ/Australia.

12 Meadow Fescue Establishes easy. Not susceptible to Fendophyte. Tolerant to acid/poorly-drained soils. Tolerant to close grazing. Lower yielding than tall fescue. Higher forage quality than others. Very winter hardy.

Lewis County, 2016

Grass seed sold in NY (estimate)

13

As late as mid-May for grasses and early June for alfalfa.

Too early:
Cold, wet soils

Too late:
Multiple stresses
Temperature
Moisture
Weeds

As late as late August for grasses and mid August for alfalfa.

Too early: Hot and dry

Too late: Insufficient time to establish.

Seeding prior to the onset of spring soil freeze-thaw cycles.

Cheap & Easy Red clover

Higher risk of failure.

Reed canary, BFT: Don't do it.

Factors Affecting Seeding Rate

Seed size
Pure Live Seed (PLS)
Soil type
Seedbed condition
Seeding method

PLS = germination x purity $0.95 \times 0.97 = 92\%$ PLS

Ability to use weed control (RR-alfalfa). Yield & persistence on good land..

Alfalfa-grass mixtures

Reduce potential for alfalfa heaving. Eliminate need for commercial N. Grass will fill void left by alfalfa decline. Alfalfa-grass is higher yielding. Alfalfa-grass can produce as much milk as pure alfalfa...

18

Alfalfa acres sown with grass

Mixed Alfalfa-Grass Stands

- 1. Ideal forage for lactating dairy cattle.
- 2. A Northeast USA phenomenon.
- 3. Manage like alfalfa if >50% alfalfa.
- 4. Manage like grass if <50% alfalfa.
- 5. Optimum spring harvest is after pure grass and before pure alfalfa.

Recommended Seeding Depth

Species
Soil type
Soil moisture
Time of seeding
Firmness of seedbed

Roughly 0.2 to 0.5 inch depth. Deeper if moisture stress.

Mean Stage by Weight (MSW)

```
Crop Staging -
Alfalfa Staging System
 Mean state by count
    Vegetative (0-2)
    Bud (3-4)
    Flowering (5-6)
    Seed (7-9)
 10 stems (Stage 3)
25 stems (Stage 4)
 6 stems (Stage 5)
```

MSC = (10*3)+(25*4)+(6*5) = 160/41 = 3.9 (10+25+6)

Perennial Grass Staging System

Continuous index

Germination (0-0.9)

Vegetative (1.0-1.9)

Elongation (2.0-2.9)

Reproductive (3.0-3.9)

Seed Ripening (4.0-4.9)

Stage designation (e.g. G0) and an index No. MSC calculated like alfalfa MSC.

Reed canary is 2.5% units higher in CP. (Average of 3 sites, 3 years, 4 reps)

Forage

Meets effective fiber needs of a dairy cow (when fed as the primary forage source in the diet).

NDF = Neutral Detergent Fiber

Optimum Quality

Alfalfa NDF = 38-42% (hay)
43-47% (silage)

Grass NDF = 50-55%

Alfalfa CP = 18-19%Grass CP = 17-18%

DairyOne Forage Laboratory Long-term averages

10% CP, 65% NDF

Legume Hay

20% CP, 41% NDF

Sampling is the largest source of variation in the analytical process.

